323,012 research outputs found

    An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    Get PDF
    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented

    Nonsingular density profiles of dark matter halos and Strong gravitational lensing

    Full text link
    We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from zero to ten arcseconds) is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS+NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profiles (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.Comment: 17 pages, 4 figures, ApJ accepted. Final version matches the proofs. A curve in figure 2 is corrected, conclusions unchange

    Allowable silicon wafer thickness versus diameter for ingot rotation ID wafering

    Get PDF
    Inner diameter (ID) wafering of ingot rotation reduce the ID saw blade diameter was investigated. The blade thickness can be reduced, resulting in minimal kerf loss. However, significant breakage of wafers occurs during the rotation wafering as the wafer thickness decreases. Fracture mechanics was used to develop an equation relating wafer thickness, diameter and fracture behavior at the point of fracture by using a model of a wafer, supported by a center column and subjected to a cantilever force. It is indicated that the minimum allowable wafer thickness does not increase appreciably with increasing wafer diameter and that fracture through the thickness rather than through the center supporting column limits the minimum allowable wafer thickness. It is suggested that the minimum allowable wafer thickness can be reduced by using a vacuum chuck on the wafer surface to enhance cleavage fracture of the center core and by using 111 ingots

    The Massive Disk Around OH 231.8+4.2

    Full text link
    We have obtained 11.7 micron and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from OH 231.8+4.2, an evolved mass-losing red giant with a well studied bipolar outflow. We detect both a central unresolved point source and extended emission which is aligned with the bipolar outflow seen on larger scales. We find that the unresolved central source can be explained by an opaque, flared disk with an outer radius near 300 AU and an outer temperature of about 130 K. One possible model to explain this flaring is that the material in the disk is orbiting the central star and not simply undergoing a radial expansion.Comment: ApJ, in pres

    Phase diagram of QCD at finite temperature and chemical potential from lattice simulations with dynamical Wilson quarks

    Full text link
    We present the first results for lattice QCD at finite temperature TT and chemical potential μ\mu with four flavors of Wilson quarks. The calculations are performed using the imaginary chemical potential method at κ=0\kappa=0, 0.001, 0.15, 0.165, 0.17 and 0.25, where κ\kappa is the hopping parameter, related to the bare quark mass mm and lattice spacing aa by κ=1/(2ma+8)\kappa=1/(2ma+8). Such a method allows us to do large scale Monte Carlo simulations at imaginary chemical potential μ=iμI\mu=i \mu_I. By analytic continuation of the data with μI<πT/3\mu_I < \pi T/3 to real values of the chemical potential, we expect at each κ[0,κchiral]\kappa\in [0,\kappa_{chiral}], a transition line on the (μ,T)(\mu, T) plane, in a region relevant to the search for quark gluon plasma in heavy-ion collision experiments. The transition is first order at small or large quark mass, and becomes a crossover at intermediate quark mass.Comment: Published versio

    A model of a dual-core matter-wave soliton laser

    Full text link
    We propose a system which can generate a periodic array of solitary-wave pulses from a finite reservoir of coherent Bose-Einstein condensate (BEC). The system is built as a set of two parallel quasi-one-dimensional traps (the reservoir proper and a pulse-generating cavity), which are linearly coupled by the tunneling of atoms. The scattering length is tuned to be negative and small in the absolute value in the cavity, and still smaller but positive in the reservoir. Additionally, a parabolic potential profile is created around the center of the cavity. Both edges of the reservoir and one edge of the cavity are impenetrable. Solitons are released through the other cavity's edge, which is semi-transparent. Two different regimes of the intrinsic operation of the laser are identified: circulations of a narrow wave-function pulse in the cavity, and oscillations of a broad standing pulse. The latter regime is stable, readily providing for the generation of an array containing up to 10,000 permanent-shape pulses. The circulation regime provides for no more than 40 cycles, and then it transforms into the oscillation mode. The dependence of the dynamical regime on parameters of the system is investigated in detail.Comment: Journal of Physics B, in pres

    Dirty, Skewed, and Backwards: The Smectic AA-CC Phase Transition in Aerogel

    Full text link
    We study the smectic AC transition in anisotropic and uniaxial disordered environments, e.g., aerogel with an external field. We find very strange behavior of translational correlations: the low-temperature, lower-symmetry Smectic C phase is itless translationally ordered than the it high-temperature, higher-symmetry Smectic A phase, with short-ranged and algebraic translational correlations, respectively. Specifically, the A and C phase belong to the quasi-long-ranged translationally ordered " XY Bragg glass '' and short-ranged translationally ordered " m=1 Bragg glass '' phase, respectively. The AC phase transition itself belongs to a new universality class, whose fixed points and exponents we find in a d=5-epsilon expansion
    corecore